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Abstract

Impulse-radio ultra-wideband (IR-UWB) radar technology employs short-duration impulse waves with
broad bandwidth for precise detection and tracking, offering a cost-effective, non-invasive alternative for
portable heart rate monitoring. Its practical design supports long-term healthcare applications without
adverse effects. However, effective implementation necessitates robust signal processing techniques to
minimize interference from clutter signals and breathing harmonics, enabling the extraction of the target
signal from background noise and interference. This study aims to provide real-time measurements
through the implementation of signal processing algorithms such as Fast Fourier Transform (FFT),
autocorrelation, and peak finding with a moving average filter (MAF) to extract heartbeat signals from
background noise and interference. Algorithms were tuned for range parameters and bandpass filter
order, with a Kaiser window-based FIR filter (order 250) selected for testing. The FFT algorithm achieved
the highest accuracy of 85.6%, while peak finding with MAF and autocorrelation attained accuracies of
78.5% and 76.6%, respectively. The FFT algorithm demonstrated superior potential for real-time heart
rate monitoring and was implemented in a graphical user interface (GUI) for data visualization.

1. Introduction

The impulse-radio ultra-wideband (IR-UWB) radar
technology gives rise to non-contact heart rate monitor-
ing by emitting and recording radar waves that detect
tiny chest movements causes by cardiac activity. In
contrast to conventional electrocardiogram (ECG) and
pulse oximeters, radar-based monitoring mitigates
hygiene hazards, improves patient comfort, and facil-
itates continuous, long-term monitoring in clinical and
home environments [1]. To guarantee reliable readings,
signal processing methods are used to reduce noise and
interference while retrieving critical physiological data.
Key elements such as the subject’s location, measurement
angle, and movement have a substantial impact on data
dependability. The radar readings are then analyzed
using powerful algorithms that separate heartbeat signals
from background noise and breathing harmonics. This

© 2025 The Author(s). Published by IOP Publishing Ltd

technology allows for real-time, high-precision heart rate
monitoring without physical limits, making it suited for
use in clinical, home-based, and remote healthcare
settings. By removing the requirement for physical touch,
IR-UWB radar offers a viable option for continuous and
unobtrusive physiological monitoring, hence enhancing
patient comfort and long-term usage.

2. Literature review

2.1. Fundamental of radar technology in non-
contact heart rate monitoring

Non-contact heart rate monitoring with radar tech-
nology is a refined technique that allows heart rate
measurement without making physical touch [2].
Radar technologies such as IR-UWB [3], Frequency-
Modulated Continuous Wave (FMCW) [4], and
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Doppler [5] radars have been extensively researched
and demonstrated efficacy for this application. Radar
technology acts by producing radio waves that reflect off
a target and return as an echo, enabling the detection of
movement, even slight chest motion due to heartbeat
and breathing [6, 7]. Research has consistently shown
that radar accurately detects heartbeats without direct
skin contact, positioning it as a viable non-invasive
option [2, 7, 8]. In contrast to traditional sensors, radar
enables uninterrupted monitoring without requiring
electrodes, hence reducing the hazards of skin irritation
and infection transmission [2]. This functionality is
especially beneficial in critical care, newborn surveil-
lance, sleep assessments, and home healthcare applica-
tions [9]. Furthermore, radar technology diminishes the
necessity for frequent inspections and alleviates the
challenges associated with treating infectious illnesses
like COVID-19. It is increasingly utilized in remote
monitoring for chronic cardiovascular illnesses, Alzhei-
mer’s, and dementia care [10].

Among radar technologies, IR-UWB radar is par-
ticularly valued because to its excellent signal-to-
noise ratio (SNR) and ability to give exact, real-time
heart rate readings even with body movement [2, 11].
Unlike FMCW and Doppler radar, IR-UWB offers
higher precision in detecting heart motion while suc-
cessfully filtering out breathing harmonics and exter-
nal noise. Its contactless nature makes it extremely
ideal for continuous monitoring in both medical and
daily situations [1, 3]. With its benefits in accuracy,
non-contact capabilities, and real-time monitoring,
IR-UWB radar provides a dependable alternative to
current heart rate monitoring approaches.

2.2. Signal processing techniques

Higher-Order Harmonics Peak Selection (HOHPS) [8] is
a signal processing approach that improves the accuracy
and reliability of heart rate measurements, even in the
presence of breathing and ambient noise. The exper-
imental findings demonstrate that the proposed
approach has an average mean absolute error (MAE) of
1.32. The peak selection algorithm is a critical component
of the HOHPS approaches, as it picks the higher-order
harmonic peaks of the radar signal to accurately estimate
the heart rate.

Assume array P has entries py, p,, ... Py, indicating
all peaks over 100 beats per minute (BPM). The algo-
rithm then discovers all peaks p; between 100 and 400
BPM and saves their associated frequencies in a vec-
tor, asillustrated in equation (1):

P=1pp,-- p,l )

The subsequent step is to estimate two initial
values for the heart rate, as given in equation (2):
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)

hr, 1

h Tguess2

If p, and p, differ by less than 100 BPM, p, and p,
are considered the first two harmonics of the heart
rate and are divided by 2 and 3, respectively, to pro-
duce the initial heart rate assumptions hrg,. and
htguesso- If the difference between p; and p, is 100 BPM
or larger, p; is considered the initial fundamental
value for the heart rate, hry and p, is presumed to
be the second harmonic and divided by 2 to obtain
hrguessz‘

The vector Pis divided by hrges; and hrges; indi-
vidually, and the results are rounded to obtain the
integer multiple arrays Intl,, and Int2,,, as indi-
cated in equation (3) and (4).

1
p 0
r
Intypy = round | [pTpT] x guesst )
0
hrguessZ
= [intlyu i0t2]
(3
where
intlyu = [intlpun intlygy .. 0L’

N2 = [0 2001 0820000 . i1 2pua]T . (4)

After that, vector P is divided element-wise by
Intl,,,; and Int2,,,; separately to create heart rate esti-
mation arrays hrl,; and hr2,; as given in
equations (5) and (6).

T T
Mg = — 2P
[intlyu 1225]
= [hrle hr2e] 5)
where
hrle = [hrlestl hrless . hrlestn]’
hr2e = [hrzestl hr2er ... hrzesm]- (6)

To calculate errorl and error2, deduct hrg,.; and
hguess; from hrly and hr2,.y, respectively, as illu-
strated in equations (7) and (8).

Error = abs ([hrlm hr2@st]— [hrguessl h"guessz])

= [errorl error2],

(7)
where

errorl = [errorly errorl, ... errorl,],

error2 = [error; error, ... errorl,]. (8)

If the estimated errors surpass a 6 BPM threshold,
the resulting high-frequency peak is deemed noise.
The estimated heart rates and errors connected with
this peak are deleted from the heart rate estimation
array depending on their index.
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The averages of the remaining errors for errorl
and error2 are determined. hry represents the pre-
dicted heart rate array with the lowest average inaccu-
racy. Equation (9) shows that the final heart rate, hr,
is calculated by averaging hry;,.

hrest = mean (hrslt)> (9)

where

L hrle , if mean (errorl) < mean (error2)
Tsir = .
o hr2.s, otherwise

(10)

Other strategies include using the lowpass Butter-
worth filter in research that focus on human movement
and vital sign extraction [12—14]. This filter effectively
reduces high-frequency noise from the received radar
signals, improving the clarity of vital information. As
mentioned in [15], the magnitude response of the low-
pass Butterworth filter is given by equation (11), while
the attenuation is defined by equation (12).

HW) = ——5 an

Attenuation

2N
A= —IOZog(l i (i) ) (12)
We

The non-linearity of radar signals presents breathing
harmonics, notably the second and fourth harmonics,
which overlap with the human heart rate range. To over-
come this problem, a Notch filter bank technique is uti-
lized to eliminate breathing harmonics, setting notch
frequencies at 2 to 4 times the extracted breathing fre-
quency before heart rate estimation [16]. The Kalman
filter is another noise-reduction method used in signal
processing. In [1], it was utilized for vital sign monitor-
ing at distances of 1 m and 2 m. Results demonstrated an
increase in signal-to-noise ratio (SNR), with values
increasing to 18.2 dB at 1 m and 14.9 dB at 2 m after
filtering. This modification resulted to a reduction in
root mean square error (RMSE) to 0.840 and 1.831,
respectively, illustrating its usefulness in enhancing
heart rate measurement accuracy.

For multi-person detection in low SNR situations,
the Channel Impulse Response (CIR) Smoothing Spline
(CIR-SS) method [17] is applied. This approach delivers
great penetration, exact range measuring, minimal
power consumption, and cost efficiency. The program
gathers radar echoes, performs thresholding, and does
time-of-arrival (TOA) range estimate to detect several
individuals’ vital signs. Additional processing, including
clutter reduction and azimuth estimation, boosts accur-
acy in retrieving heart rate data. Experimental assess-
ments demonstrate that CIR-SS efficiently separates
heartbeats from breathing signals, even in complicated
situations such as through-wall monitoring. The system
obtained breathing and heart rate estimate errors of

3
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5.14% and 4.87%, respectively. Studies [4, 17] employ-
ing X4M200 IR-UWB radar proved the accuracy of
CIR-SS for non-contact multi-person heart rate
monitoring.

Another research [5] studied single-channel Doppler
radar with an enhanced signal processing method for
heart rate detection. It featured a Finite Impulse Response
(FIR) filter to minimize noise and retrieve heart rate
information. Three methods—Fast Fourier Transform
(FFT), autocorrelation, and peak detection with a moving
average filter (MAF)—were utilized for heart rate esti-
mate. Among them, peak detection obtained the lowest
mean difference of 2.6 BPM compared to reference
values, followed by FFT (3.5 BPM) and autocorrelation
(5.1 BPM). The standard deviation data further con-
firmed peak detection as the most accurate approach.

Based on the literature presented above, this study
aims to improve heart rate estimation accuracy using IR-
UWRB radar by investigating, adapting, and optimizing
signal processing techniques including FFT, autocorrela-
tion, and peak selection for radar-based heart rate mon-
itoring. Each method is evaluated using real datasets
collected in a hospital setting at a fixed range. To further
assess robustness, the proposed method is also tested
using datasets acquired in a controlled environment
across multiple distances to examine the impact of range
on performance. The contributions of this study are as
follows:

1. Independent implementation and fine-tuning of
FFT, autocorrelation, and peak selection algo-
rithms specifically for IR-UWB radar.

2. Integration of the optimized method into a real-
time monitoring system with a graphical user
interface (GUI) displaying heart rate, and time-
stamps for clinical and remote health applications.

3. Methodology

This study employs PyCharm, an integrated develop-
ment environment (IDE) for Python, developed by
JetBrains, to process GUI of the real-time heart rate
monitoring using the X4M200 radar sensor, developed
by Novelda AS. The X4M200 is a radar sensor System-
on-Chip (SoC) designed primarily for breathing mon-
itoring and its sensitivity is adjustable from 0 to 9, where
higher values increase sensitivity. The sensor operates in
the 6.0-8.5 GHz ultra-wideband range, with a center
frequency of 7.29 GHz. It uses a built-in noise map to
filter out background noise and improve detection
accuracy, providing respiration waveforms, movement
levels, and presence detection signals [18].

Before further processing, the X4M200 generates
raw received radar signals in the form of a radar scat-
tering matrix. The sensor is configured to acquire
scans (frames) at a rate of 20 frames per second (FPS),
generating a radar scattering matrix in which each
row represents spatial samples from different range
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Figure 1. Radar scattering matrix.
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Figure 2. Received signal (a) with (b) without subject presence.

bins (fast time), and each column represents observa-
tions (frames) recorded at various time intervals (slow
time). Figure 1 illustrates the resulting radar scatter-
ing matrix [19]. The range resolution of the sensor is
approximately 5.14 cm, meaning it can differentiate
objects separated by at least this distance [18]. The
amplitude of the received signal is influenced by target
reflectivity, motion, clutter and multipath inter-
ference. The raw signal contains both direct reflec-
tions and secondary multipath components, which
can introduce unwanted artifacts. Additionally,
motion artifacts from breathing and environmental
noise are present in the signal, requiring appropriate
filtering and signal processing techniques to accu-
rately extract heart-related micro-movements [20].
The tested algorithms are responsible for isolating
heart-related signals from these unwanted compo-
nents, ensuring accurate heart rate estimation.

3.1. Signal visualization

Figure 2(a) shows the graph of the UWB received
signal in baseband form when a subject is present and
close to the radar, while figure 2(b) depicts the

— Received signal without subject presence

0.025
0.020
0.015
0.010
0.005
0.000

Amplitude

0 25 50 75 100 125 150 175
Bins

(b)

graph when no subject is in the radar sensing area.
The received signal will change according to the chest
movements for the subject breathing, as illustrated in
figures 3(a) and (b) showing the inhaling and exhaling
phases, respectively. The heartbeat movement cannot
be observed in these figures as clearly as the breathing
movement, since the chest movement for the heart-
beat is too small. Therefore, the signal must undergo
signal processing techniques specifically for heartbeat
detection to remove clutter signals and breathing
harmonics.

3.2. Datasets and experimental setup
This study utilizes two types of datasets. The first
dataset comprises data collected at UiTM hospital
using the X4M200 IR-UWB radar, as described in
paper [21]. Signal processing is conducted using data
collected over 10-minute intervals from this recorded
dataset, primarily aimed at validating the proposed
signal processing technique.

The second dataset is data in real-time application
using the setup as presented in figure 4. The experi-
ment will be conducted in a controlled indoor

4
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Figure 3. Received signal when subject (a) inhale (b) exhale.
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Figure 4. Experiment setup.

environment to ensure consistent conditions with 2
healthy subjects for data recording in approximately 3
min for each participant. The subjects will maintain a
sitting posture with normal breath. Data collection
will be performed in front directions to capture com-
prehensive information at different ranges from the
subjects, specifically at 50 cm, 100 cm, 150 cm, and
200 cm. This variation aims to investigate the effect of
proximity on the accuracy of heart rate detection
using radar technology and the sensing area of the
radar. Heart rates extracted from the data with the
three algorithms were compared with the reference
data taken using a pulse oximeter.

3.3. Development of signal processing algorithm

The collected data are processed using a Kaiser
window FIR filter for clutter signal reduction, fol-
lowed by testing three different methods; FFT, auto-
correlation, and peak finding with MAF to detect the
heart rate signal. Each algorithm are tested with
different parameters for the FIR window, including
filter order and passband cutoff frequencies, through
a trial-and-error method tailored for optimal use with
IR-UWB in diverse experimental setups. The heart

rate determined by the algorithms was compared with
wrist pulse oximeter, Nonin 3150. Subsequently, the
optimal parameter configuration for the algorithm
will be applied to real-world data to evaluate its
performance and adjust for variability, aiming for
consistent and accurate heart rate monitoring.

3.3.1. FIR kaiser window

The Kaiser window-based FIR filter is applied to
remove noise and interference from the raw radar
signal. By setting appropriate cutoff frequencies, it
isolates the heart signal by filtering out the low-
frequency breathing signals and other high-frequency
noise. This process ensures that only the frequency
components corresponding to heartbeats are retained
in the signal for further processing. This filter is a
versatile digital signal processing tool that is a superior
choice for accurate and reliable heart rate detection
using radar technology. It is highly effective in
reducing noise and unwanted components from
signals, making it suitable for heart rate detection in
radar applications [22-24]. It provides superior per-
formance in filtering compared to other window
functions like Blackman, Bartlett, and Hanning,
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Table 1. Filter parameters for kaiser window-based
bandpass filtering.

FIR kaiser bandpass filter FIR equiripple

Frequency specifications f=0.5Hz,fy=85Hz
Beta, 3 5

Filter taps 201

Filter order, N 50, 100, 150, 200, 250

particularly in radar digital signal processing [25, 26].
For radar heart rate detection, the Kaiser window
function is highly effective at clutter signal removal. It
excels in noise reduction [26], provides low amplitude
error [27], supports both real-time and offline analysis
[22], enhances SNR, and benefits from parameter
optimization [23].

The Kaiser window is employed to design the filter
coefficients using the windowing method, influencing
the frequency response.

M
Y(n) =S h(k) - X(n — k) (13)

k=0

Equation (13) represents the convolution opera-
tion, where Y (n) is the output signal, X (n — k) is the
input signal, shifted by k time steps, and h(k) are the
FIR filter coefficients [28]. The Kaiser window pro-
vides significant flexibility in designing FIR filters by
allowing control over the trade-off between the main-
lobe width and side-lobe attenuation. In this study,
the filter order was fine-tuned across five different
values to determine the optimal configuration for
heart rate estimation. The filter specifications are
detailed in table 1.

3.3.2.FFT

FFT calculates the N frequency spectra corresponding
to these N time domain signals. N spectra are
synthesized into a single frequency spectrum. DFT
equation as below:

N—-1
X[kl = > x[nIWRE for0<k<N-—1 (14
n=0

where n = 0,...,N-1 is signal index, k = 0,...,N-1 is
spectrum index. x[n] is be real and complex number
and Wy is phase factor and it is a complex num-
ber [29].

By analyzing the frequency spectrum, the algo-
rithm identifies the peak frequency, which corre-
sponds to the heart rate. The highest peak in the FFT
outputis used to determine the heart rate in BPM.

3.3.3. Autocorrelation

Autocorrelation, also known as serial correlation, is
the correlation of a signal with a delay copy of itself as
a function of delay. In other words, similarity exists
between the observations of the same subject at
separate times, and it is a function of time lag. The
analysis of autocorrelation is a mathematical tool for

6
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finding repeating patterns, such as to find a periodic
signal obscured by noise.

The autocorrelation coefficient, p,(7) denotes the
correlating degree of the same event between two dif-
ferent periods, and the expression is as equation (15):

W) Xipr — W] ) Xipr — p)l
(15)

pe(T) = E[(xi —

where T is the interval between series iy and
(i + T)m, E is the expected value operator, p is the
mean value of the series x and o is the deviation of
x[30].

Autocorrelation is performed with a lag ranging
from 1 to 200 samples. It measures how the signal cor-
relates with itself over various time lags. The first sig-
nificant peak in the autocorrelation function indicates
the signal’s periodicity, which corresponds to the
heart rate. By identifying the lag at which this peak
occurs, the heart rate is estimated.

3.3.4. Peak finding with moving average filter

Before applying the Moving Average Filter (MAF), the
signal is first clipped to remove any sudden spikes or
outliers. The clipping threshold is calculated as the
mean of the absolute values of all samples in the
filtered signal. This threshold is used to limit both
positive and negative amplitudes, effectively reducing
the influence of extreme values that could distort the
signal.

Once the signal is clipped, the next step is to
smooth it using a MAF as the remaining noise comp-
onent in the received signal might affect the efficiency
in peak detection [31]. A simple moving average with
a window size of 60 is used, as defined in
equation (16):

i=k
S Z
7, = ZiEkeen™ (16)
S

Where 7 is the averaged value at index k of the
sequence Z, Z; is the individual elements and s
represents the window size, determining the influence
of the previous data on the current observation. The
MAF helps reduce high-frequency noise, providing a
smoother waveform that is more suitable for accurate
peak detection. Peaks are identified by evaluating each
sample to determine if it is a local maximum within a
90-sample window. The total number of peaks
detected within the specified time duration is then
counted, and the heart rate is estimated in BPM.

3.4. Evaluation metric

The performance of the tested algorithms in heart rate
estimation is evaluated based on accuracy. Accuracy is
determined by calculating the proportion of correctly
detected instances, including both positive and nega-
tive cases, relative to the total number of instances
[32].Itis calculated using the following formula:
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Table 2. Average accuracy for 10-minute data interval using hospital UiTM dataset (A).
Subject 1 (B). Subject 2 (C). Subject 3 (D). Subject 4 (E). Subject 5.

BPF order 50 100 150 200 250
Algorithm Average accuracy for 10-min data intervals (%)
@)
FFT 38.90 39.50 48.30 51.80 68.90
Autocorrelation No data No data 27.50 81.00 74.80
Peak finding with MAF 88.80 92.10 87.30 87.30 91.50°
®
FFT 36.90 51.70 56.20 64.60 75.20
Autocorrelation No data No data 49.30 63.90 77.00"
Peak finding with MAF 42.70 47.50 45.30 54.40 55.60
©
FFT 39.00 26.50 51.50 53.80 66.30
Autocorrelation No data No data 21.50 78.00 77.90
Peak finding with MAF 79.10 83.80 83.00 86.40 90.30°
D)
FFT 33.90 43.00 49.80 61.00 69.70
Autocorrelation No data No data 58.10 47.00 56.50
Peak finding with MAF 54.40 57.60 68.10 73.00 77.90°
(E)
FFT 43.30 44.00 39.50 45.10 78.80
Autocorrelation No data No data 41.40 67.50 67.60
Peak finding with MAF 77.00 70.60 77.40 80.70 84.50°
“Bold indicates the highest accuracy achieved with the BPF of order 250 across 5 subjects.
Accuracy (%) = true value — measured value window-based FIR filter with a bandpass cutoff fre-

17)

The average accuracy is then calculated over a N-
minute data interval to ensure a reliable performance
assessment.

4. Result

Before implementing the algorithms for real-time
monitoring, we first evaluated their performance on a
dataset collected from a hospital at UiTM. This testing
phase served as a benchmark to assess the algorithms’
accuracy prior to their application in real-time
scenarios. These algorithms were tested on five
different datasets.

Table 2 lists the accuracy of the heart rates of the
five subjects. It can be seen that the autocorrelation
does not show heart rate for BPF order below 150.
Autocorrelation relies on identifying repeated pat-
terns over time, which may not exist in the signal data
at those distances. FFT analyzes frequency content,
while peak finding with MAF identifies peaks based
on amplitude, which might still be detectable even if
autocorrelation fails. The highest accuracy for the
three algorithms—FFT, autocorrelation, and peak
finding with MAF—was achieved using a Kaiser

quency of 0.5 Hz to 8.5 Hz and a filter order of 250.

Based on table 2, the highest accuracy rates for FFT,
autocorrelation, and peak finding with a MAF, are
91.50%, 77%, 90.30%, 77.90%, and 84.50% respec-
tively. The accuracy of these algorithms is limited
because the datasets include subjects with low heart rate
(below 50 BPM), normal heart rate (between 50 to 90
BPM), and high heart rate (above 90 BPM). These three
algorithms can achieve high accuracy when the heart
rate reading in normal range, but the accuracy drops for
subjects with high and low heart rate. This could be due
to the filter’s cutoff frequency, as low and high heart-
beats theoretically have lower or higher frequencies,
respectively. Thus, the current cutoft frequency band-
pass may be more suitable for normal heartbeats. To
validate this situation, the algorithm was applied to real-
time data for heart rate detection.

Next, the algorithms were tested using real-time
data across four ranges: 50 cm, 100 cm, 150 cm, and
200 cm. Subject 1s detection accuracy, shown in
figure 5, was below 90%, likely due to their elevated
heart rate (above 90 BPM). In contrast, Subject 2’s acc-
uracy, depicted in figure 6, was higher due to their heart
rate falling within the normal range. While the FFT algo-
rithm showed better performance for detecting high
heart rates, autocorrelation and peak finding with MAF
were more accurate for normal heart rates. Based on
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Figure 5. Average accuracy of Subject 1 with high heart rate.
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figures 5 and 6, certain methods achieve over 90% acc-
uracy within the range of 50 cm to 150 cm, although per-
formance varies depending on the method and
measurement distance. These findings indicate that
increasing the measurement range can adversely affect
the detection of weak radar heartbeat signals [33].

Figure 7 presents the average accuracy of the algo-
rithms at different measurement distances. The FFT
algorithm demonstrates the highest average accuracy
at 85.6% and is therefore incorporated into the GUI
for real-time data visualization, as shown in figure 8.
This superior performance is likely due to FFT’s

robustness in extracting frequency components from
radar heartbeat signals, making it well-suited for prac-
tical heart rate monitoring. The peak finding method
with MAF and the autocorrelation method achieved
average accuracies of 78.5% and 76.6%, respectively,
and remain available options within the system. The
algorithm selection in the GUI can be dynamically
adjusted according to performance requirements or
environmental conditions. Future work includes fur-
ther optimizing these algorithms and exploring
hybrid approaches to enhance accuracy and reliability
across diverse operating ranges.

8
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Figure 8. Data visualization in GUL

5. Conclusion

The X4M200 IR-UWRB radar is a low-power, health-
safe device intended for long-term healthcare mon-
itoring. It determines heart rate by collecting chest
movements related to breathing and heartbeat
through reflected radar signals. However, its imple-
mentation employing FFT within a GUI has limita-
tions, with accuracy falling short of the 95% target.
Optimizing signal processing techniques and settings
is required to boost performance and adaptability to
varied situations.

One key difficulty is inaccuracy when persons
move out of the radar’s detecting region. In such
instances, the system may maintain a steady BPM out-
put instead of recognizing the subject’s absence. The
present 5-second FIFO update constantly analyzes
heart rate frames, however if the subject departs the
detection zone, BPM values might change until
remain constant (e.g., from 69 BPM to 60 BPM)
instead of reaching 0 BPM. This occurs because the
algorithm chooses the largest variance signal, which
might be an ambient reflection rather than an actual
heart rate. An error-handling technique is needed to
identify true heart rate data from deceptive high-var-
iance reflections.

Despite the promising capabilities of the proposed
system, there are several limitations that need to be
addressed. Firstly, the system operates under the
assumption that the detected individual remains still.
Any movement can introduce signal distortions,
which may reduce the accuracy of the heart rate esti-
mation. Additionally, radar signals are susceptible to
reflections from surrounding objects, which can lead
to incorrect readings and interference in heart rate
measurement. Another limitation is the system’s per-
formance in environments with multiple people. The

9

algorithm is currently designed to detect the heart rate
of a single individual, and when multiple people are
present within the sensing area, it may struggle to dif-
ferentiate between their heart rates, affecting the over-
all reliability of the system. Moreover, the adaptive
bandpass filtering mechanism in the system must
dynamically adjust to account for actual heart rate
variations. A fixed bandpass range may not effectively
accommodate physiological differences across indivi-
duals, leading to potential inaccuracies in the heart
rate estimation.

To address these limitations, incorporating pre-
dictive tracking and adaptive filtering techniques
could enhance system reliability, particularly when
subjects temporarily leave the sensing area. Further-
more, refining the algorithm to better distinguish
multiple simultaneous heartbeats would improve the
system’s applicability in medical and crowded envir-
onments. Real-world challenges such as motion arti-
facts and breathing harmonics further complicate
accurate heart rate estimation. Therefore, expanding
the study to include more subjects and optimizing
algorithm parameters are essential steps toward
improving robustness, validating results, and ulti-
mately enhancing estimation accuracy in practical
settings.
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