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Graphical abstract Abstract 

Inefficient storage of paddy and rice grains can lead to grain deterioration, resulting in 

post-harvest losses ranging from 10% to 30%. The quality of grains cannot be improved 

throughout the storage period. Therefore, following the mechanisation of agricultural 

industries, air dryers have been developed to control the crops’ moisture level by blowing 

ambient or heated air into the silo to improve the aeration and allow the grains to be 

preserved with minimal loss of quality until the appropriate time for managing and 

marketing processes. However, the conventional sampling method used to measure the 

moisture level is inefficient because it is very localised and only represents part of the 

moisture distribution inside the bulk grains. Additionally, incorporating advanced 

technologies can be a significant cost limitation for small-scale industries. Thus, to address 

the issue, this research study developed a radio tomographic imaging (RTI) system in a silo-

scale prototype using 20 sensor nodes operating at 2.4 GHz to localise and monitor the 

moisture level constructively. The RTI system reconstructs the cross-sectional images across 

the rice silo by measuring radio frequency attenuation, in terms of received signal strength 

(RSS) quality, caused by the rice moisture phantoms within the wireless sensor network 

(WSN) area. A total of five phantoms’ profiles having a percentage of moisture content 

(MC) of 15%, 20% and 25% were reconstructed using four image reconstruction algorithms,

Linear Back Projection (LBP), Filtered Back Projection (FBP), Newton’s One-step Error

Reconstruction (NOSER) and Tikhonov Regularisation. Then, an image quality assessment,

Mean Structural Similarity Index (MSSIM), was utilised to evaluate the performance of the

reconstructed images. Lastly, a numerical method based on the first-order linear regression

model was introduced as a preliminary approach toward the method’s establishment. In 

summary, the experimental results demonstrated average image quality scores for all MC

levels (15%, 20% and 25%), where the range scores are 0.2776 – 0.4755. Based on the

numerical analysis, the results support the possibility of engaging the proposed technique

to monitor the moisture level inside a rice silo with the highest and lowest correlation

coefficients of 0.7218 and 0.5442, respectively.

Keywords: Image reconstruction, radio tomography, received signal strength, grain 

moisture sensing, moisture measurement 
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1.0 INTRODUCTION 
 

Generally, the quality of rice grains is defined by the 

attributes of their physicochemical characteristics [1, 

2]. The composition of chemical properties, which 

leads to their nutritional value, comprises variations of 

amylose content, starches, and gelatinisation 

temperature. Meanwhile, the physical qualities that 

determine the market value include the whiteness, 

uniformity of grains dimension, head rice and the 

colour of the grains. According to the review by [2], 

the presence of moisture content (MC) appears to be 

a critical factor that tends to alter these attributes. MC 

is referred to as the wet basis, meaning the total 

weight of the grain, including the water (MC w.b.), 

expressed in percentage. 

As per the analysis conducted [3, 4, 5], to sustain 

the quality of paddy and rice grains and allow long-

term storage, they must be dried down to 12 – 14% 

MC, depending on the local weather conditions, 

storage durations and types of storage. Grains with a 

higher percentage of MC tend to be frail, which may 

be pulverised and encourage the growth of fungal 

attack, whereas if the percentage of MC is too low, 

the grains become brittle and are exposed to a higher 

rate of breakage [5, 6, 7]. 

Over the past decades, [8] has presented the 

dielectric properties of grains and seeds as a function 

of the applied frequency, their percentage of moisture 

content, as well as the temperature and density of 

these materials. They are practically expressed as the 

complex permittivity relative to free space,  

[9]. The real part,  is the dielectric constant 

associated with the grain’s ability to store the applied 

electrical energy, while the imaginary part,  is known 

as the dielectric loss factor, which represents the 

dissipation of applied electrical energy in the form of 

heat. Their properties, therefore, are significant for the 

agricultural industry, especially in moisture level-sensing 

applications [10]. For particular application of moisture 

sensing, [11] has also discussed that electromagnetic 

radiation greatly influences the dielectric materials 

due to their natural polarisation of water molecules. 

The recorded quantitative data by [12] has 

summarised the correlation of dielectric properties of 

various rice cultivars with frequencies ranging from 50 

Hz to 12 GHz and the percentage of MC ranging from 

11 – 21%. The authors concluded that the dielectric 

Abstrak 
 

Proses penyimpanan bijirin padi dan beras padi yang tidak cekap boleh menyebabkan 

kemerosotan nilaian bijirin, sekaligus mengakibatkan kerugian selepas tuaian antara 10% 

hingga 30%. Kualiti bijirin tidak boleh dipertingkatkan sepanjang tempoh penyimpanan. 

Oleh itu, berikutan mekanisasi industri pertanian, pengering udara telah dibangunkan 

untuk mengawal tahap kelembapan bijirin dengan mensalurkan udara sekeliling atau 

yang dipanaskan ke dalam silo untuk meningkatkan pengudaraan dan membolehkan 

bijirin dipelihara daripada kemerosotan kualiti sehingga masa yang sesuai untuk 

pengurusan seterusnya atau proses pemasaran. Walau bagaimanapun, kaedah 

persampelan konvensional yang telah digunakan untuk mengukur tahap kelembapan 

mungkin tidak cekap kerana ia sangat setempat dan tidak mewakili keseluruhan taburan 

kelembapan secara pukal di dalam silo. Selain itu, menggabungkan teknologi canggih 

boleh menjadi faktor kos yang ketara tinggi untuk industri berskala kecil. Oleh itu, untuk 

menangani isu tersebut, kajian penyelidikan ini membangunkan sistem pengimejan 

tomografi radio (RTI) di dalam silo berskala prototaip menggunakan 20 nod penderia yang 

beroperasi pada frekuensi 2.4 GHz untuk menyetempat dan mengukur tahap kelembapan 

dengan lebih baik. Sistem RTI ini membina semula imej keratan rentas merentasi silo beras 

dengan mengukur pengurangan frekuensi radio, dari segi kualiti kekuatan isyarat (RSS) 

yang diterima, yang disebabkan oleh profil kelembapan beras di dalam kawasan 

rangkaian penderia tanpa wayar (WSN). Sebanyak lima profil beras yang mempunyai 

peratusan kandungan kelembapan (MC) sebanyak 15%, 20% dan 25% telah dibina semula 

menggunakan empat algoritma pembinaan semula imej, Unjuran Belakang Lurus (LBP), 

Unjuran Belakang Ditapis (FBP), Pembinaan Semula Ralat Satu Langkah Newton (NOSER) 

dan Regularisasi Tikhonov. Kemudian, penilaian kualiti imej, Mean Structural Similarity Index 

(MSSIM), digunakan untuk menilai prestasi imej yang dibina semula. Akhir sekali, kaedah 

berangka berdasarkan model regresi lurus telah diperkenalkan sebagai pendekatan awal 

ke arah pembentukan kaedah yang disarankan. Secara ringkasnya, keputusan 

eksperimen menunjukkan purata skor kualiti imej untuk kesemua peringkat MC (15%, 20% 

dan 25%), di mana skor julat adalah 0.2776 – 0.4755. Berdasarkan analisis berangka, 

keputusannya menyokong kemungkinan menggunakan teknik yang dicadangkan untuk 

memantau tahap kelembapan di dalam silo beras dengan pekali korelasi tertinggi dan 

terendah sebanyak 0.7218 dan 0.5442, masing-masing. 

 

Kata kunci: Pembinaan imej, tomografi radio, kualiti kekuatan isyarat, pengesanan 

kelembapan bijirin, pengukuran kelembapan 
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constant consistently increased with the percentage 

of MC over a higher to lower frequency range. In 

contrast, the behaviour of the loss factor is less 

predictable where there were linear increases and 

decreases in the data with the percentage of MC at 

some different ranges of frequencies. Lastly, they also 

found that the conductivity of all kinds of rice is directly 

proportional to the frequency values. This 

characteristic has evolved into promising commercial 

techniques that could improve the efficiency of 

moisture sensing and explore practical moisture 

sensing employment in the storage monitoring 

process. 

Ever since the discovery of grains MC and their 

associated dielectric properties, an exciting evolution 

of moisture sensing techniques has been established 

[13]. Some of these current techniques have offered a 

convenient, low cost and provide rapid measurement, 

which is beneficial for the moisture sensing application. 

Nonetheless, from a specific point of view, the most 

common disadvantage among them is the 

employment of the sampling method, where only a 

few grams of grain sample are treated, making them 

apply a destructive process and eventually inefficient 

in monitoring moisture distribution within bulk storage. 

Therefore, this study proposed a radio tomographic 

imaging (RTI) system to improve the performance of 

moisture distribution sensing in rice silos, comparatively 

offering a distinctive approach to determine the 

properties of rice MC without altering or tearing down 

the features of the grains. The proposed method 

focuses on tomogram analysis produced by 

developing an RTI system for monitoring the moisture 

distribution inside an experimental lab-scaled rice silo 

setup. The remarkable approach of this technique is 

that it allows repeatable measurements on the same 

material over a duration of time, which in future could 

be applied to monitor several material properties 

corresponding with the control system as desired. 

 

 

2.0 METHODOLOGY 
 

Previously, the application of process tomography for 

moisture assessment has customised numerous hard-

field and soft-field sensory systems. Some of the 

tomography sensors designed for different kinds of 

moisture detection and monitoring systems are, for 

example, studies involving cementitious materials [14], 

quantifying a 3D geometrical cracking behaviour in 

solid clayey soil [15], determination of local moisture 

content for wood in real-time measurement [16], study 

to assess the moisture distribution in a damp historical 

building [17], investigating the moisture patterns under 

the homogeneous soil during rainfall incidents [18], 

and spotting wet wood presence in the silver fir trees 

[19]. To summarise, the deployed sensor structure 

serves as the core input to the system, which is built 

primarily based on the suitability of the surrounding, 

the nature of the object of interest and the resolution 

quality of the information required by the user [20, 21]. 

Figure 1 illustrates the block diagram of a process 

tomography system [22, 23]. The system’s composition 

can be separated into three basic structures: the 

sensory system, the data interface part, and the 

image reconstruction system for producing the 

tomogram. The sensing facility consists of sensors, 

measurement circuits and signal conditioning circuits 

to measure and transmit data from the sensing area to 

the data acquisition system. Finally, in the image 

reconstruction part, the theoretical sensor output is 

firstly interpreted by solving the forward problem, and 

then the tomogram is built by solving the inverse 

problem using the image reconstruction algorithm. 

 

 
 

 

 

This section aims to explain the research 

methodology, consisting of three subsections. The first 

subsection starts with explanations of the hardware 

design involved in the RTI system. The next subsection 

discusses the forward and inverse problems related to 

the image reconstruction technique. Lastly, an image 

enhancement analysis is described to improve the 

quality of the reconstructed images. 

 

2.1 Hardware Design 

 

The concept of the RTI technique was initially 

proposed by [24]. This technology enables the 

monitoring and locating static or moving targeted 

objects using image reconstruction based on changes 

in the received signal strength (RSS) between each 

stationary sensor link within the wireless sensor network 

(WSN) area. The wireless network is termed an “RF 

sensor network” because the network itself is the 

sensor that measures the signals attenuation of each 

transmission link between the RF sensor nodes. It is 

understood that when an object obstructs the 

transmission links, the RSS quality of the associated links 

will experience a significant loss, whereas unblocked 

links remain unaffected. Hence, the RTI system 

monitors and localises the targeted object by 

reconstructing the RSS attenuation map across the 

network area. 

Figure 2 shows the hardware measurement setup 

for the RTI system. In this preliminary investigation, the 

rice silo is conceptualised to investigate the capability 

of the RTI system to image the moisture distribution 

Electronic 

Measurement 

Circuit 

Data 

Acquisition 

System 

Image 

reconstruction 

Sensory 

system 

Sensor 

array 

Figure 1 Block diagram of a process tomography system 
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inside the rice silo. As the propagation mechanism of 

electromagnetic waves involves wave scattering, 

diffraction, and reflection, the silo configuration is 

carefully determined to facilitate electromagnetic 

wave interference within the silo [25, 26]. It takes the 

formation of a 50 x 50 cm square base with a height of 

70 cm, constructed from a robust acrylic plate with a 

thickness of 1 cm. 

 

 
 

 

 

The rice silo is also equipped with 20 RF sensor 

nodes evenly distributed around the perimeter of the 

square silo, operating at a frequency of 2.4 GHz, to 

take advantage of the low-cost, over-the-shelf Wi-Fi 

sensors and the standard ISM band of the WSN. In this 

study, the number of RF sensor nodes is specifically 

considered to enhance the quality of the 

reconstructed images because a greater number of 

projection links intersect at specific points, leading to 

better imaging results [27, 28]. 

 

2.1.1 Setting of Moisture Content Phantom 

 

Ideally, the evaluation of the RTI system should involve 

the build-up of moisture spots that are naturally 

distributed across the silo. However, due to the high 

cost of the rice grains, this study avoided intentionally 

inducing uncontrolled spoilage. Thus, the experiment 

utilized cylindrical containers to house the rice 

phantoms throughout the entire experiment. Figure 3 

shows the two sizes of cylindrical containers to 

represent the small and big rice moisture phantoms, 

each holding a total volume of 2.1 L and 5.6 L, 

respectively. The heights of the containers may differ, 

but both containers are filled with rice moisture 

consistently at a height of approximately 22 cm. The 

thickness of both containers, which is 1 mm, can be 

considered negligible compared to the wavelength of 

the radiating frequency at 2.4 GHz, which is 124.91 mm 

[29]. 

 

 
 

 

 

 

Several sets of known rice moisture phantoms have 

been used to test and validate the performance of 

the RTI system. The dry rice stored in the silo usually has 

an MC of 12 – 14%, as it is the standard percentage of 

rice MC after the drying process, subsequently for 

marketing purposes [3, 30]. For the rice moisture 

phantoms, the MC is set incrementally by 5% each 

time it is increased, starting at 15%, 20%, and finally 

25%. The highest MC percentage of 25% exemplifies 

the worst condition for rice moisture phantom since 

the paddy grains are typically harvested when the 

percentage of MC is between 24% and 26% [3, 30]. 

The percentage of MC is adjusted to the desired 

set based on the moistening method used in the 

previous study [31]. A predetermined amount of water, 

 in kg, is calculated by Equation (1). 

 

 
 

Where  is the initial mass of the rice grains (kg),  is 

the initial percentage of the rice MC (% wet basis) and 

 is the desired percentage of the rice phantom (% 

wet basis). 

The flow process performed for sample preparation 

of rice moisture phantoms is as in references [31, 32]. 

Firstly, the initial percentage of rice MC is measured 

using a commercial Grain Moisture Meter (MC-7828G). 

The recorded initial MC of rice for all the experimental 

studies ranged from 11.30% to 13.80%. Next, 

approximately 1.5 kg and 3.7 kg of the rice are weight 

using a weighing scale and loaded into the small and 

big containers, respectively. The determined amount 

of water,  is then added to the sample as per the 

desired percentage of MC. Finally, the container is left 

for the water to be entirely absorbed until no excess 

water can be drained. The container was shaken 

regularly throughout the moisture setting to ensure the 

rice moisture sample was evenly moistened. The 

experimental study repeats the flow process for all rice 

moisture phantoms studied. 

 

 
(1) 

Figure 2 RTI measurement system set-up 

Figure 3 Details of the physical containers representing the 

rice moisture phantoms 



67                                  Nurul Amira Mohd Ramli et al. / Jurnal Teknologi (Sciences & Engineering) 86:3 (2024) 63–78 

 

 

Figure 4 illustrates the five rice moisture phantoms, 

Phantom A, B, C, D and E, involving single and multiple 

positions considered in this experimental study. 

 

 
 

 

 

2.2 Data Acquisition Technique 

 

In designing a tomography system, the accuracy and 

stability of the sensory structure are determined 

primarily by the data acquisition technique. In this RTI 

system, the WSN's layout architecture is based on the 

Basic Service Set (BSS) for Wi-Fi network topology, 

which entitled each sensor node to exchange data by 

sharing one gateway [33]. The wireless peer-to-peer 

network communication involved 20 RF sensor nodes, 

signified by the Wi-Fi module ESP8266, with an 

operating frequency of 2.4 GHz. The RF sensor nodes 

are configured to perform dual functions (transceiver): 

enabling them to transmit and receive the RF signals 

(RSS value). This sensory system constructed a 

sequential excitation and measurement procedure 

before entering the signal processing unit. Figure 5 

illustrates the block diagram of the RTI network 

communication system. According to the block 

diagram, the RTI data acquisition system consists of an 

access point (Wi-Fi router), 20 RF sensor nodes 

(ESP8266), a cloud-hosted (Firebase) and a personal 

computer. 

 

 
 

 

 

In order to activate the system's network 

communication, all RF sensor nodes are initially 

configured to connect to the access point. 

Simultaneously, the cloud-hosted, Firebase platform is 

launched to request the RSS reading from the RF 

sensor node, N1. This sensor node, N1, would perform 

as the receiver and communicate consecutively with 

the remaining sensor nodes (N2 to N20) to transmit the 

RF signals. Then, the measured RSS value at the N1 

receiver would be sent to the Firebase through 

Message Queue Telemetry Transport (MQTT) protocol. 

The Firebase is an online platform that allows users to 

store and synchronise data in real-time using a cloud-

hosted, NoSQL database. The measurement system 

would automatically receive RSS data until the sensor 

node, N20, finished transmitting data to the Firebase 

and disconnected as the receiver. 

 

2.3 Image Reconstruction Technique 

 

The tomographic images are generally derived by 

solving the forward and inverse problems. Firstly, a 

forward problem is addressed to estimate the 

theoretical scattered electromagnetic field 

measurements calculated at each excited RF sensor 

node. Then, an inverse problem is solved to acquire 

the tomogram of the rice silo cross-section using both 

linear and non-linear image reconstruction algorithms. 

 

2.3.1 Solving Forward Problem 

 

As aforementioned, the experimental work utilised RF 

transmission links within the WSN monitoring area to 

assess the RSS attenuation values. When an RF signal 

propagates in line-of-sight (LOS) from a transmitter 

through a medium, the power received at the 

respective receiver deteriorates as it covers a distance 

or crosses an attenuating object, which reduces the 

signal's strength. In an RTI network, this phenomenon is 

generally defined as link shadowing loss, as illustrated 

in Figure 6 [24]. 

 

 
 

 

 

 

The voxel grid is assigned as an element when 

referring to the actual 3D space, which is analogous to 

a pixel in 2D space. Since the weighted voxels 

Access point 

(Wi-Fi router) 

RF sensor node 

(ESP8266) 

Personal 

computer 

Cloud 

(Firebase) 

Request for RSS Value 

Push data to cloud 

Signal processing unit 

Figure 4 Experimental design of rice moisture phantoms 

Figure 5 Block diagram of the RTI network communication 

system 

Figure 6 An example of a link in an RTI network that travels in 

a direct LOS path 
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(darkened) representing the signal attenuation are 

known, the shadowing loss,  can be estimated as 

in Equation (2) [34]. 

 

 
 

Where  is the weighting of voxel  for link  and  

is the attenuation level in a voxel  at a certain time, . 

Therefore, Equation 3 is applied to express the 

coexisting RSS value changes,  for each transmission 

link in the RTI network area. 

 

 
 

Where  is the vector of the measured RSS,  is the 

 weighting matrix,  is the expected attenuation 

image, which has to be determined and  is the 

noise vector. 

In this study, the RSS measurement is recorded in 

two conditions. Firstly, when the RTI system is calibrated 

without rice moisture phantoms, and secondly, when 

the phantoms are placed inside the silo. Thus, by 

utilising the RTI-based approach, assessing the 

difference between the two RSS readings can lead to 

the localisation of the rice moisture phantom. 

 

2.3.2 Solving Inverse Problem 

 

Measurement data collected from the tomography 

sensory system can be acquired through various 

techniques. However, an appropriately chosen image 

reconstruction algorithm is essential in generating a 

quality cross-sectional image for a tomography 

system. In this study, three types of image 

reconstruction algorithms are employed, which are 

linear algorithm, iterative algorithm, and non-linear 

algorithm. 

The most popular linear algorithms applied in the 

tomography system are Linear Back Projection (LBP) 

and Filtered Back Projection (FBP) algorithms [35]. In 

the LBP algorithm, a linear image mapping is 

reconstructed by adding all the cross-products of the 

projection data from each sensor node with its 

corresponding sensor loss value [36]. The LBP algorithm 

is widely recognised for its straightforward and fast 

reconstruction technique. While for the FBP algorithm, 

a filter matrix is introduced to sharpen the generated 

image obtained through the LBP technique. This 

technique has suppressed the blurring effect 

produced by the LBP algorithm but also enhances the 

image noises [37]. Equations (4) and (5) describe the 

mathematical equations for the LBP and FBP 

algorithms. 

 

 
 is the summation of total sensitivity maps, also 

known as the weight-balanced matrix (WBM), while  

is the sensor loss.  is defined by the electric field 

measured when there is a rice moisture phantom with 

‘X’ MC inside the monitoring area, and  is the 

electric field measured before the presence of the 

phantom. 

 

 
 

Where  is the maximum pixel magnitude in the 

weight-balanced matrix, . 

Newton’s One-step Error Reconstruction (NOSER) 

algorithm is an example of the iterative algorithm [38]. 

While soft-field tomography delivers more advantages 

to be applied in their inhomogeneous experimental 

setup, these researchers have to face the drawbacks 

of a long and complex computation process. 

Therefore, they proposed that the forward problem 

only needs to be solved once instead of solving the 

forward problem at every different conductivity 

distribution. By applying the NOSER algorithm and 

solving the second iterative step through 

measurement from sensor nodes at the reference 

distribution model, [38] have successfully presented a 

better algorithm performance by reducing systematic 

errors and increasing the image reconstruction 

stability. Equation (6) displays the NOSER algorithm 

formulation. 

 
 

 is calculated using the least square method. The 

least-square method minimises the variation between 

the  and  for a given electric field distribution in 

the computational domain [39].  is the Hessian matrix 

that acts as the stabiliser, and  is the computed 

Jacobian matrix described above. In addition, the 

transposed Hessian matrix is utilised as a rough 

approximation instead of an inverse matrix because it 

is impossible to compute the direct inverse [40]. 

(6) 

Where  

 

and  

 

 

 

(5) 

Where                                      

 

 

(4) 
 

Where                             and         
  

(3)  

(2) 
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The ill-posed inverse problem in the essence of soft-

field tomography is making the measurement data 

highly sensitive to noise. Based on the literature study, 

the most conventional non-linear algorithm utilised to 

solve this problem is Tikhonov Regularisation (TR) [41]. 

The additional regularisation parameter introduced to 

the mathematical model has minimised the noise 

spikes through the TR algorithm, which later smoothed 

the reconstructed image [42]. Furthermore, since this 

parameter can be predetermined, real-time image 

processing with acceptable imaging results is possible 

[27, 41]. Equation (7) represents the mathematical 

formulation of the TR algorithm employed to 

reconstruct the rice moisture phantoms [28]. 

 

 
 

 and  are unitary matrices, and  is a diagonal 

matrix. The diagonal elements of  are singular values, 

. Based on the equations above, the involved 

regularisation would introduce additional information 

into the mathematical model to handle these small 

singular values, consequently stabilising the inverse 

problem [43]. Tikhonov’s smoothing approach is 

influenced by this regularisation parameter, , where 

. Based on the initial analysis, the value of the 

MSSIM index for  and  was 

calculated and similarly found at 0.3928. The iteration 

is therefore concluded to have reached its limitation 

when a constant value of the image quality 

assessment is recorded [28]. Thus, the same  value is 

chosen as the optimum regularisation parameter to 

construct the phantoms’ profiles. 

 

2.4 Image Thresholding Technique 

 

In tomographic images, the quality of an image for 

post-processing analysis could be improved by 

introducing a thresholding technique [44]. In this study, 

the thresholding technique is an approach to segment 

the rice moisture phantom from the background 

region by removing unwanted noises, thus, 

transforming the reconstructed images into a 

presentable state for more straightforward image 

analysis. This technique involves choosing a threshold 

ratio, , which is the ratio of a pixel value relative to 

the maximum pixel value. Any pixel value lower than 

the preferred threshold ratio defined by  would be 

rounded to zero. The approach, known as a global 

thresholding technique, is presented in Equation (8). 

 

 
However, specifying a standard threshold ratio that 

can be used for all tested phantoms is crucial. To 

ensure the technique is reasonable, all reconstructed 

images obtained from LBP, FBP, NOSER and TR 

algorithms experienced the same global thresholding 

process. The threshold ratio is firstly assessed by testing 

the total 60 reconstructed images with all possible 

thresholding values ranging from 0.01 to 1.00 (100 

steps). Then, the best threshold ratio is selected based 

on the maximum score exhibited by the image quality 

indexes, the Mean Structural Similarity Index (MSSIM) 

[23]. Finally, the median value from the best threshold 

ratio is calculated and chosen as the standard 

thresholding value respecting each image 

reconstruction algorithm LBP, FBP, NOSER and TR. The 

median value is selected since it is less affected by the 

outliers' data, which, therefore, is practical for 

comparing the different rice moisture phantoms [45]. 

An offline global thresholding analysis is performed 

to acquire the best threshold values based on the 

highest image quality indexes, MSSIM, concerning the 

reference images. Figure 7 describes an example of 

the applied thresholding steps in the experimental 

study of rice moisture phantoms obtained by the LBP 

algorithm at a 15% percentage of MC. Meanwhile, 

based on the LBP algorithm, Table 1 tabulates the 

calculated median value among the best threshold 

ratios for rice moisture phantoms at 15%, 20% and 25% 

MC. 

 

 
 

 

 

 
Table 1 The best threshold ratio for rice moisture phantoms 

obtained by the LBP algorithm 

 

Phantom 
Percentage of Moisture Content 

15% 20% 25% 

A 1.00 1.00 0.96 

B 0.67 1.00 0.97 

C 0.86 0.88 0.86 

D 0.97 0.93 0.95 

E 0.85 0.91 0.90 

Median 0.86 0.93 0.95 

 

 

(8)  

 

 
(7) 

Where  

  

and  

 

 

Figure 7 Example of thresholding step on phantoms’ profiles 

A, B, C, D and E at 15% moisture content using LBP algorithm 
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Table 2 below summarises the global threshold ratio 

selected based on the unbiased median probability 

through the maximum score exhibited by the MSSIM 

index for all image reconstruction algorithms LBP, FBP, 

NOSER and TR. Since each algorithm produced 

different baselines for the maximum pixel value in the 

reconstructed images, the thresholding results are 

quantified concerning each respective algorithm. 

 
Table 2 Median threshold ratio by different image 

reconstruction algorithms 

 

Algorithm 
Percentage of Moisture Content 

15% 20% 25% 

LBP 0.86 0.93 0.95 

FBP 0.97 1.00 1.00 

NS 0.85 0.87 0.86 

TR 0.92 0.93 0.93 

 

 

3.0 RESULTS AND DISCUSSIONS 

 

This section discusses and analyses the outcomes of 

the experimental study following the methodologies 

detailed in the previous section. The effectiveness of 

the proposed RTI system is validated by using the 

selected image reconstruction algorithms to image 

the rice moisture phantoms. Furthermore, numerical 

analysis is also conducted using linear regression 

models to evaluate the efficiency of the rice moisture 

sensing system in each case study. 

 

3.1 Image Assessment Analysis 

 

Tables 3, 4, 5 and 6 describe the five phantoms' profiles 

utilising LBP, FBP, NOSER and TR algorithms, 

respectively. Every reconstructed and thresholded 

image is compared with its corresponding reference 

image. Generally, all four image reconstruction 

algorithms have adequately generated images 

corresponding to the reference images for all 

percentages of 15%, 20% and 25% MC. 

Based on the reconstructed images, it is evident 

that the spot with higher colour intensity is 

concentrated in the targeted location, indicating the 

distribution of the rice moisture phantoms. However, 

these results also illustrated that, as the number and 

size of the rice moisture phantoms increased, the 

background artefacts gradually marked up the 

imaging results, which, unfortunately, enhanced the 

noise background. These scenarios are depicted 

mostly by the LBP and FBP algorithms compared to the 

NOSER and TR algorithms because the back-projection 

techniques used by the LBP and FBP algorithms often 

result in artefacts that reduce the accuracy [42]. 

On the other hand, the NOSER and TR algorithms 

have visually generated good tomogram images by 

minimising the noise floor artefacts due to their non-

linear approach to solving the inverse problem. 

The following application of the simple thresholding 

technique has effectively removed the background 

artefacts in the reconstructed images, thus illustrating 

the imaging results in uncluttered tomograms. 

However, it can also be noticed that the pre-set global 

threshold values have been producing over-

thresholded images, where only several rice moisture 

phantoms have good thresholded images. 

The previous discussion regarding the imaging 

results is briefly based on human eye tolerance, and 

this method is called the subjective method. Hence, to 

investigate the method’s feasibility, the performance 

of the executed tomograms is evaluated using image 

quality assessment concerning the reference MC 

distribution. 

In tomographic imaging, the image quality 

assessment is an essential benchmark for evaluating 

the reconstructed image quality. In this study, the 

MSSIM index has been employed to quantify the 

reconstructed images. The recorded parameter 

compares the structural similarity between two images 

and generates an index ranging from zero to one (0-

1). Higher values of the MSSIM index indicate that the 

reconstructed image is likely identical to the reference 

image. The evaluated image is indexed based on 

structure, luminance, and contrast [46, 47]. The overall 

results of the MSSIM index for rice moisture phantoms 

A, B, C, D and E at 15%, 20%, and 25% MC are 

tabulated in Tables 7 and 8. 
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Table 3 Reconstructed and thresholded images of rice moisture phantoms using the LBP algorithm 

 

Phantom 
15% MC 20% MC 25% MC 

Reconstructed Thresholded Reconstructed Thresholded Reconstructed Thresholded 

A 

      
B 

      

C 

      

D 

      

E 

      

 

 
Table 4 Reconstructed and thresholded images of rice moisture phantoms using the FBP algorithm 

 

Phantom 
15% MC 20% MC 25% MC 

Reconstructed Thresholded Reconstructed Thresholded Reconstructed Thresholded 

A 

      
B 

      

C 

      

D 

      

E 
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Table 5 Reconstructed and thresholded images of rice moisture phantoms using the NOSER algorithm 

 

Phantom 
15% MC 20% MC 25% MC 

Reconstructed Thresholded Reconstructed Thresholded Reconstructed Thresholded 

A 

      
B 

      

C 

      

D 

      

E 

      

 

 
Table 6 Reconstructed and thresholded images of rice moisture phantoms using the TR algorithm 

 

Phantom 
15% MC 20% MC 25% MC 

Reconstructed Thresholded Reconstructed Thresholded Reconstructed Thresholded 

A 

      
B 

      

C 

      

D 

      

E 
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Table 7 MSSIM indexes measured on the reconstructed image of rice moisture phantoms 

 

Phantom 
15% MC 20% MC 25% MC 

LBP FBP NS TR LBP FBP NS TR LBP FBP NS TR 

A 0.2942 0.2830 0.3261 0.3075 0.2914 0.2808 0.3191 0.3027 0.2875 0.2782 0.3109 0.2968 

B 0.3301 0.3136 0.3566 0.3424 0.3267 0.3119 0.3557 0.3405 0.3288 0.3176 0.3496 0.3378 

C 0.3541 0.3365 0.3773 0.3649 0.3516 0.3318 0.3718 0.3605 0.3506 0.3412 0.3688 0.3589 

D 0.3104 0.2967 0.3330 0.3198 0.3096 0.2994 0.3312 0.3185 0.3080 0.2993 0.3277 0.3160 

E 0.3918 0.3665 0.4087 0.4002 0.3924 0.3843 0.4067 0.3994 0.3925 0.3843 0.4070 0.3997 

 

 
Table 8 MSSIM indexes measured on the thresholded image of rice moisture phantoms 

 

Phantom 
15% MC 20% MC 25% MC 

LBP FBP NS TR LBP FBP NS TR LBP FBP NS TR 

A 0.9658 0.9678 0.9715 0.9734 0.9678 0.9674 0.9734 0.9733 0.9738 0.9653 0.9726 0.9785 

B 0.9179 0.9091 0.9304 0.9252 0.9191 0.9191 0.9174 0.9132 0.9226 0.9191 0.9293 0.9325 

C 0.8866 0.8871 0.9079 0.9053 0.8871 0.8867 0.9021 0.9090 0.8925 0.8871 0.9074 0.9055 

D 0.9377 0.9354 0.9469 0.9503 0.9360 0.9347 0.9542 0.9589 0.9420 0.9354 0.9350 0.9447 

E 0.8369 0.8380 0.8699 0.8726 0.8385 0.8383 0.8612 0.8704 0.8485 0.8383 0.8745 0.8727 

 

 

Tables 7 and 8 display the image quality 

assessment, MSSIM, assessed from the overall image 

reconstruction algorithms for the experimental study of 

rice moisture phantoms. Based on the results, each 

image reconstruction algorithm delivered acceptable 

MSSIM values at all percentage of rice MC levels (15%, 

20%, and 25%). 

Before the thresholding process, the maximum and 

minimum scores for the MSSIM index are 0.4087 at 15% 

MC of Phantom E using the NOSER algorithm and 

0.2782 at 25% MC of Phantom A using the FBP 

algorithm, respectively. Throughout the percentage of 

MC studies, the NOSER algorithm consistently had the 

highest MSSIM indexes, outperforming all other 

algorithms. On the contrary, the FBP algorithm normally 

produced the lowest MSSIM values. 

The NOSER algorithm remarkably shows 

exceptional performance feasibly due to its iterative 

approach involving measurements from sensor nodes 

within the reference distribution model [38]. Regarding 

the contradictory MSSIM results acquired by the FBP 

algorithm, previous analysis [37] believed that the filter 

matrix in the FBP algorithm leads to the amplification of 

the image noise, resulting in imprecise image 

reconstruction results. 

Based on Table 8, the thresholded imaging results, 

as expected, improved the overall image quality 

values for all rice moisture levels (15%, 20% and 25%). 

The maximum score of the MSSIM index is 0.9785 at 

25% moisture content of Profile A using the TR 

algorithm, while the minimum score of the MSSIM index 

is 0.8369 at 15% moisture content of Profile E using the 

LBP algorithm. 

Although the thresholded results have eliminated 

the unwanted artefacts, several phantoms' profiles 

have been over-thresholding. Besides, regarding the 

image reconstruction algorithms, it can be observed 

that the thresholded images inconsistently represent 

which algorithm is the best for rice moisture imaging at 

every percentage of MC. These issues are mainly due 

to the approach of global thresholding that considers 

the threshold value by concerning the overall rice 

moisture phantoms while constituting the highest 

image quality score from the MSSIM assessment [48]. 

According to Table 3, the FBP algorithm clearly 

described an ineffective result of the thresholding 

technique. Most of the thresholded phantoms are 

disappeared due to over-threshold conditions. 

Corresponding to the finding by reference [35], the 

dot product between the filter and LBP matrices has 

shifted the colour scale on the reconstructed image 

when the FBP algorithm is applied in the soft-field 

tomography. Therefore, the subsequent global 

thresholding technique has generated these 

underperformance results. Nevertheless, as discussed 

in the previous section, the thresholding technique was 

purposely adopted to enhance the reconstructed 

images into a presentable and direct state. 

In this study, the thresholding technique has been 

proven to be the solution for eliminating back-

projection artefacts. With artefacts being removed, 

the errors resulting from the artefacts are also reduced. 

However, integrating a more sophisticated 

thresholding technique, such as Otsu and adaptive 

thresholding technique [49, 50, 51], could solve the 

problem of over-thresholded images and improve the 

thresholding effectiveness. 

 

3.2 Maximum Pixel Value Analysis 

 

Generally, the higher pixel intensity in the 

reconstructed RTI images signifies the estimated 

phantoms’ location, shape, and size. By emphasising 

the variations in colour scale, the reconstructed RTI 

images have successfully identified the existence of 

the rice moisture phantoms. Nevertheless, these 

tomograms only produced reliable information for the 

location and size of the moisture distribution. Due to 

the smearing effects, it is also challenging to 

differentiate the changes in the percentage of MC. 
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Accordingly, a measurable quantitative analysis is at 

least necessitated. 

In this study, an individual pixel of the reconstructed 

tomogram has produced its certain intensity based on 

the scattered electric field, which is approximated by 

the contrasting permittivity distribution. Hence, the 

maximum weighting pixel of the reconstructed images 

should indicate its relative percentage of MC. Based 

on this understanding, the maximum pixel value from 

the reconstructed RTI image’s grid can be utilised to 

form a simple linear regression plot. This subsection 

intends to investigate the correlation between 

different percentages of MC and the maximum pixel 

values based on the linear regression plot and 

examine the feasibility of the developed approach for 

a percentage of rice moisture approximation. The 

linear regression model is applied to estimate the 

value of the dependent variable (maximum pixel 

value) at a definite value of the independent variable 

(percentage of MC). 

Since the image reconstruction algorithms delivered 

different baselines of the maximum pixel values, the 

data is quantified using the percentage ratio over the 

maximum pixel value acquired from the tomogram of 

the reference medium, where the rice moisture 

phantom is absent. Then, based on the calculation, 

the maximum pixel value in terms of percentage for all 

algorithms can be appropriately evaluated. 

Figure 8 displays the linear regression model of the 

percentage of maximum pixel value as a function of 

moisture content by employing LBP, FBP, NOSER and TR 

algorithms. The scattered data plot establishes a linear 

fitting line for all image reconstruction algorithms 

concerning each phantom’s profile. All four algorithms 

have conclusively identified a positive correlation 

between the percentage of MC and the maximum 

pixel value. A positive correlation indicates that the 

maximum pixel value increases as the percentage of 

MC increases. 

 
 

 

 

(a) 

(d) (c) 

(b) 

Figure 8 Percentage of maximum pixel value using (a) LBP (b) FBP (c) NOSER and (d) TR algorithms 



75                                  Nurul Amira Mohd Ramli et al. / Jurnal Teknologi (Sciences & Engineering) 86:3 (2024) 63–78 

 

 

3.2.1 Linear Regression Model 

 

The positive correlation between the percentage of 

MC and the maximum pixel value can be 

quantitatively analysed using a linear regression 

model. Since the maximum pixel value linearly 

increased with the percentage of MC, a first-order 

polynomial regression model is preliminary predicted, 

as shown in Equation (8) [52]. 

 

 
 

Where  and  are the specific notations of the 

regression model based on the rice moisture 

phantoms. Besides, the  is also defined as the 

regression coefficient representing the gradient of the 

fitted line [52], by which the number of maximum pixel 

values positively changed on average as the 

percentage of MC increased by one unit. 

Besides, in order to indicate the strength of the 

linear relationship between the percentage of rice MC 

and the maximum pixel value, the correlation 

coefficient,  is analysed. The  value ranges from 0 

to 1 and is generally interpreted as the statistical value 

determining how close the plotted data are to the 

fitted regression line [53]. A higher  value describes 

that the variation in the dependent variable 

(maximum pixel value) strongly correlates with the 

independent variable (percentage of MC). 

Table 9 describes the statistical linear regression 

analyses performed in the experimental study through 

LBP, FBP, NOSER and TR algorithms. Based on the 

corresponding table, all rice moisture phantoms 

indicate that the number of the maximum pixel value 

is significantly influenced by the percentage of rice 

MC, with the lowest correlation coefficient, , of 

0.8051 for Profile A using the NOSER algorithm. 

Meanwhile, the highest recorded correlation 

coefficient, , is 0.9988 for Profile B, also using the 

NOSER algorithm. As reflected by a higher  value, 

these results consequently supported that the variation 

in the maximum pixel value strongly correlates with the 

percentage of moisture content, regardless of the 

location and size of the rice moisture phantoms. 

Table 9 also deduced that all image reconstruction 

algorithms consistently express the highest regression 

coefficient, , on rice Phantom E, followed by D, C, B 

and Phantom A. These results demonstrated that, at a 

similar size of the monitored area, the bigger the 

moisture distribution, the more significant the 

percentage of MC shifting can affect the number of 

the maximum pixel value. 

Table 9 Correlation coefficients of the linear regression model using LBP, FBP, NOSER and TR algorithms 

 

Algorithm Phantom Linear Regression Model Correlation Coefficient,  

LBP 

A  0.8096 

B  0.9604 

C  0.8691 

D  0.9151 

E  0.9040 

FBP 

A  0.8746 

B  0.9921 

C  0.9427 

D  0.9169 

E  0.9147 

NS 

A  0.8051 

B  0.9988 

C  0.8718 

D  0.9452 

E  0.9013 

TR 

A  0.8077 

B  0.9945 

C  0.8720 

D  0.9143 

E  0.9010 

 

 

(8)  
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4.0 CONCLUSION 
 

A radio tomographic imaging system for localization 

towards rice moisture content distribution sensing has 

been successfully designed and developed, and the 

investigation on the efficiency and accuracy of the 

system’s performance was executed. In conclusion, 

the experimental study has effectively demonstrated 

that the RTI system can locate and monitor the rice 

moisture distribution with acceptable precision 

through all four image algorithms. 

It can be primarily deduced that as the number 

and size of the rice moisture phantoms increased, the 

smearing artefacts gradually marked up the 

reconstructed tomogram images. Furthermore, from 

the overall phantoms’ profiles, it is concluded that 

NOSER and TR algorithms deliver more accurate 

imaging results compared to LBP and FBP algorithms. 

The consecutive application of the global 

thresholding technique has eliminated the 

background artefacts. However, there is a weakness 

in the thresholding approach as it can be noticed 

that the pre-set global threshold values have been 

producing over-thresholded images, where only 

specific phantoms’ profiles have good outcomes. 

Last but not least, the implemented numerical 

analysis, which constantly delivered higher  values, 

has supported the possibility of employing the 

maximum pixel value of the RTI images for monitoring 

the percentage of rice MC, regardless of the location 

and size of the rice phantoms. 

The popularity of RTI implementation is mainly due 

to its accessibility and cost-effectiveness. Since 

deploying RF sensor nodes is relatively simple and 

inexpensive, a larger and more flexible sensing area 

is adaptable compared to other approaches that 

may be unfeasible. Besides, the remarkable 

approach of this technique is that it allows 

repeatable measurements on the same material 

over a duration of time, which could be applied to 

monitor several material properties corresponding 

with the control system as desired. Last but not least, 

the non-destructive approach using a numerical 

analysis that can determine the percentage of MC 

based on the reconstructed RTI images would 

sustainably preserve the volume of the rice grains 

throughout the storage operation. 
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